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Abstract. This work deals with the scattering of a plane harmonic elastic wave by a penetrable spherical scatterer
with a concentric spherical penetrable inclusion. We evaluate the zeroth and first-order approximations of the
Rayleigh expansion of the displacement fields. The major line of applications belongs to the science of the
particulate composite material. So, as an application of the method, a typical particulate composite material is
examined and the behaviour of the scattering cross section with respect to the elastic properties of the medium is
presented.

1. Introduction

The problem of scattering of a plane harmonic elastic wave by an obstacle appears as an
exterior boundary-value problem for the time-reduced Navier equation with specific boundary
conditions on the surface of the obstacle and prescribed asymptotic form in the neighborhood
of infinity.

The general theory of elastic wave propagation is very well exposed by Kupradze [1]. The
scattering of a longitudinal wave by a sphere was investigated for the first time by Ying and
Truell [2]. Einspruch, Witterholt and Truell [3] have also solved the corresponding problem
for transverse incidence. For the low-frequency region results are presented in [4]. A posteriori
bounds to the error and estimates of the effects of changing the material constants and shape
of the scatterer are described by Jones [5].

The scattering problem when the scatterer is a shell, is a rather complicated problem to
be solved analytically. This is because one must apply the boundary conditions on a set of
surfaces. The low-frequency theory for a penetrable elastic scatterer with an impenetrable
core is presented in [6].

In this paper we examine the scattering by a penetrable elastic spherical scatterer with a
concentric spherical penetrable core in the low-frequency region. More precisely, the purpose
of this paper is to exploit the low-frequency scattering theory which is presented in [7] in
order to evaluate the zeroth and first-order approximations of the Rayleigh expansion for the
displacement fields. With the knowledge of these two terms we have enough information
about the dynamic elastic fields.

The solution of this scattering problem, obtained for the low-frequency region, can be
exploited in applications of the science of composite materials. A composite material can
be considered as a homogeneous, isotropic elastic medium containing spherical inclusions.
The modeling of these materials is of considerable engineering importance because other
mechanical properties can be obtained from an analysis of their structure. By understanding
the microscopic structure of a composite material we can extract general conclusions about
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their mechanical properties. So, the solution of the above-described scattering problem can
be exploited in order to evaluate, with the aid of certain energy methods, the dynamic elastic
moduli of the material [8,9]. For this reason the zeroth and first-order approximations of
the displacement fields, as well as the scattering cross-section for real elastic materials which
consist of a typical particulate composite, are given. Finally, we present numerical results from
a particular composite material and its behaviour is discussed and explained. More precisely,
the influence of elastic properties and size of “interphase” between the core (inclusion) and
the exterior material (matrix) to scattering cross section is examined.

2. Statement of the problem

Assume a plane harmonic wave propagating in an infinite homogeneous isotropic elastic
medium with Lamé constants �1; �1 and mass density %1. Inside this medium we consider a
finite body, the scatterer with Lamé constants �2; �2 and mass density %2. We assume that the
boundary of the scatterer is a smooth surface, sayS1. LetS2 be the smooth boundary of another
such body, the core, lying entirely within the scatterer S1. We call V1 the region exterior to
S1; V2 the region between S1 and S2, and V3 the region interior to S2, filled by a medium with
Lamé constants �3; �3 and mass density %3. The space V2 is called the “interphase” of the
scatterer and S1; S2, that is, the surfaces between the two layers, are the “interfaces”.

We consider a longitudinal or a transverse incident plane wave, which, if we suppress the
harmonic time dependence, takes the form

uin(r) =

8<
:

k̂ exp(ikp1 k̂ � r)

b̂ exp(iks1 k̂ � r)
(1)

where k̂ is the propagation unit vector, b̂ is the polarization unit vector, b̂ � k̂ = 0, and kp1 and
ks1 are the wavenumbers of the P and S wave, respectively, in V1.

The displacement field v(r) in the elastic medium, upon suppression of the time dependence
expf�i!tg, satisfies the time-reduced Navier equation of dynamic elasticity

��v + !2v = 0; (2)

where

�� = c2
s�+ [c2

p � c2
s]rr:; c2

s = �=%; c2
p = �+ 2�=% (3)

and�; � are the Lamé constants of the medium, % is the mass density,! is the angular frequency
and cp and cs are the phase velocities of the shear and compressional wave respectively. In
(2) it has been assumed that there are no body forces.

We assume that 	 (1)(r) is the displacement field outside S1;	
(2)(r) is the displacement

field between S1 nd S2 and 	 (3)(r) the corresponding displacement field in the space V3. The
field 	 (1)(r) is the superposition of the incident field uin(r) and the scattered field u(r), that
is,

	
(1)(r) = uin(r) + u(r): (4)

The displacement fields 	 (j)(r); j = 1; 2; 3 satisfy Equation (2). The scattered field u(r)
satisfies the radiation conditions due to Kupradze [1]

lim
r!+1

up(r) = 0; lim
r!+1

r

�
@up(r)
@r

� ikp1 up(r)
�
= 0;
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lim
r!+1

us(r) = 0; lim
r!+1

r

�
@us(r)
@r

� iks1 us(r)
�
= 0; (5)

uniformly over all directions. The vectors up(r) and us(r) are the longitudinal and the trans-
verse components of the scattered field, respectively.

The boundary conditions on the boundaries S1 and S2 are

	
(k)(r0) = 	

(k+1)(r0)
T (k)

	
(k)(r0) = T (k+1)

	
(k+1)(r0)

)
r0 2 Sk k = 1; 2; (6)

where

T (j) = 2�j�̂
0 � r+ �j�̂

0r �+�j�̂
0 �r; j = 1; 2; 3 (7)

is the surface-stress operator and �̂ is the unit normal on surfaces with direction from Vj+1 to
Vj; j = 1; 2.

The scattering problem consists in finding the fields 	 (j)(r)j = 1; 2; 3 which satisfy
Equation (2), and the boundary conditions given by Equations (6), while the scattered field
outside S1 must satisfy radiation conditions given by (5).

In order to have the integral formulation of the problem, we will follow the �direct
method� using Betti’s formulae, as in [6]. The integral representation for the exterior total
field is

	
(1)(r) =

1
4�%1

2X
k=1

(
%k+1

Z
Vk+1

	
(k+1)(r0) �

"
!2

 
1�

c2
sk+1

c2
s1

!
� ~�(1)(r; r0)

+

"
c2
s1

�
c2
pk+1

� c2
sk+1

�
�

c2
sk+1

c2
s1

�
c2
p1
� c2

s1

�#
� rr � ~�(1)(r; r0)

#
dV (r0)

+

Z
sk

	
(k+1)(r0) �

h
T (k) � T (k+1)

i
~�(1)(r; r0) dS(r0)

�
+ uin(r); (8)

where ~�(1)(r; r0) is the fundamental dyadic solution in V1 [4].
By using asymptotic analysis as described in [4] we may transform the integral represen-

tation (8), for large r, as follows:

	
(1)(r)� uin = gr(r̂; k̂)r̂h(kpr) + g�(r̂; k̂)�̂h(ksr) + g�(r̂; k̂)�̂h(ksr) +O

�
1
r2

�
; (9)

where r̂; �̂; �̂ are the unit vectors of a spherical coordinate system having its origin interior
to the scatterer. Further, h(x) = exp(ix)=ix is the zeroth order spherical Hankel function of
the first kind and gr; g�; g� are the radial and tangential scattering amplitudes given by the
relations

gr(r̂; k̂) =
2X

k=1

(
ik3

p1

 
1�

c2
pk+1

c2
p1

!
(q(k+1)

p � r̂)

+k2
p1
~H
(k+1)
p :

 
�k � �k+1

c2
p1

~I + 2
�k � �k+1

c2
p1

r̂
 r̂

!)
; (10)
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g�(r̂; k̂) =
2X

k=1

(
ik3

s1

 
1�

c2
sk+1

c2
s1

!
(q(k+1)

s � �̂)

+k2
s1

�k � �k+1

c2
s1

[2~H
(k+1)
s : (r̂
 �̂) + h(k+1)

s � �̂]

)
; (11)

g�(r̂; k̂) =
2X

k=1

(
ik3

s1

 
1�

c2
sk+1

c2
s1

!
(q(k+1)

s � �̂)

+k2
s1

�k � �k+1

c2
s1

[2~H
(k+1)
s : (r̂
 �̂) + h(k+1)

s � �̂]

)
; (12)

The inner double product is defined as (a 
 b) : (c 
 d) = (a � d)(b � c). The quantities in
(10)–(12) are given by the relations

~H
(k)
� =

1
4�%1

Z
Sk�1

	
(k)(r0)
 �̂0 exp(�ik�1 r̂ � r0) dS(r0); (13)

q(k)� =
%k

4�%1

Z
Vk

	
(k)(r0) exp(�ik�1 r̂ � r0) dV (r0); (14)

h(k)� =
1

4�%1

Z
Sk�1

	
(k)(r0)� �̂0 exp(�ik�1 r̂ � r0) dS(r0); (15)

where in (13)–(15) � is p or s.
In [4] it has been proved, that the scattering cross section �p corresponding to an incident

P wave is given by the relation

�p = kp1

Z
jr̂j=1

n
k�3
p1
jgr(r̂; k̂)j2 + k�3

s1
(jg�(r̂; k̂)j2 + jg�(r̂; k̂)j2)

o
d
; (16)

where the integration is taken over the unit sphere. Substituting in (16) the relations for the
scattering amplitudes given by the Equations (10)–(12), we obtain the scattering cross section
for P -incidence.

The scattering cross section for S-incidence is written as �s and is given by a formula
similar to that of the P -incidence, where all the quantities are evaluated for the case of
S-incidence.

3. The problem in the low-frequency region

The displacement fields 	 (j)(r); j = 1; 2; 3 considered as functions of the wave number ks
or kp are analytic in a neighborhood of zero [5]. Consequently, they can be expanded in a
convergent power series of the wave number ks or kp. So, we have

	
(j)(r) =

1X
n=0

(ikp1)

n!
�
(j)
n (r) =

1X
n=0

(i�1k1)
n

n!
�
(j)
n (r); r 2 Vj j = 1; 2; 3; (17)

where k1 = ks1 is the wavenumber of the transverse wave in the space V1 and

�2
j =

c2
sj

c2
pj

=
�j

�j + 2�j
; j = 1; 2; 3: (18)
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Substituting (17) in (2), we conclude that the low-frequency coefficients �(j)
n (r) satisfy the

equations

�2
j��

(j)
n (r) + (1� �2

j )rr � �(j)
n (r)� n(n� 1)qj�

(j)
n�2(r) = 0; n = 0; 1; 2; . . . ; (19)

where

qj =
c2
p1

c2
pj

; j = 1; 2; 3: (20)

Note that for n = 0; 1 the last term on the left-hand side of (19) vanishes.
The boundary conditions are transformed in the low-frequency region into the boundary

conditions

�
(k)
n (r0) = �

(k+1)
n (r0);

T (k)
�
(k)
n (r0) = T (k+1)

�
(k+1)
n (r0):

(r0 2 Sk; k = 1; 2) (21)

We derive the integral representations of �(j)
n by substituting in (8) the low-frequency expan-

sions of all the quantities that appear in it and equating the equal powers of k1. So, we conclude
that

lj�
(j)
n (r) =

1
4��1

nX
%=0

�
n

%

�( 2X
k=1

"
%k+1

Z
Vk+1

�
(k+1)
% (r0)�

�

"
(c2

s1
� c2

sk+1
)(n� %)(n� %� 1)

�2
1

~V
(1)
n�%�2(r; r

0)

+
c2
s1
(c2

pk+1
� c2

sk+1
)� c2

sk+1
(c2

p1
� c2

s1
)

c2
s1

rr0rr0 ~V
(1)
n�%(r; r

0)

#
dV (r0)

+

Z
Sk

�
(k+1)
% (r0) � (T (k) � T (k+1)) ~V

(1)
n�%(r; r

0) dS(r0)
�
+ an(k̂ � r)n

�
(n = 0; 1; . . . ; k = 1; 2; j = 1; 2; 3); (22)

where

an =

8<
:

k̂; for P -incidence
b̂
�n1

; for S-incidence
(23)

lj =
1
3

 
2
�j

�j
+

�j + 2�j
�1 + 2�1

!
; j = 1; 2; 3; (24)

and ~V
(1)
n is the n-th term of the expansion of the fundamental solution ~�(1)(r; r0) at low

frequency given by the relation [4]

~V (1)
n (r; r0) =

jr� r0jn�1

�n1

( 
1 +

�n+2
1 � 1
n+ 2

!
~I + (n� 1)

�n+2
1 � 1
n+ 2

(r� r0)
 (r� r0)
jr� r0j2

)
:

(25)
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In order to derive the low-frequency expansion for the scattering amplitudes, we will insert in
(10)–(12) the Rayleigh expansions of all the quantities which appear in them. So, taking into
account the low-frequency approximations of the scattering amplitudes, we can use (16) in
order to evaluate the leading-term approximation for the scattering cross-section. So, we have

For P-incidence

�p =

(
�1(�

3
1 + 2)

12�

��
%2

%1
� 1

�
V2 +

�
%3

%1
� 1

��
+

�3
1

60�

"
15�1(1� 2�2

1 )
2
�
�2 � �1

�1

�2

+4(�5
1 � 1)

�
�2 � �1

�1

�2

+ 20�3
1 (1� 2�2

1 )

�
�2 � �1

�1

��
�2 � �1

�1

�#
� (tr ~A 2)

2

+
�3

1

60�

"
15�1(1� 2�2

1 )
2
�
�3 � �2

�1

�2

+ 4(�5
1 � 1)

�
�3 � �2

�1

�2

+ 20�3
1 (1� 2�2

1 )

�

�
�3 � �2

�1

��
�3 � �2

�1

��
� (tr ~A 3)

2

+
�3

1

30�

�
15�1(1�2�2

1 )
2
�
�2��1

�1

��
�3��2

�1

�
+4(�5

1 �1)
�
�2��1

�1

��
�3��2

�1

�

+10�3
1 (1� 2�2

1 )

�
�2 � �1

�1

�3 � �2

�1
+

�3 � �2

�1

�2 � �1

�1

��
(tr ~A 2)(tr ~A 3)

+
�3

1

15�
(� 5

1 � 1)
�
�2 � �1

�1

�2
~A 2 : ~A 2 +

�3
1

15�
(�5

1 + 4)
�
�2 � �1

�1

�2
~A 2 : ~A T2

+
�3

1

15�
(� 5

1 � 1)
�
�3 � �2

�1

�2
~A 3 : ~A 3 +

�3
1

15�
(�5

1 + 4)
�
�3 � �2

�1

�2
~A 3 : ~A T3

+
2�3

1

15�
(� 5

1 � 1)
�
�2 � �1

�1

��
�3 � �2

�1

�
~A 2 : ~A 3

+
2�3

1

15�
(� 4

1 + 4)
�
�2 � �1

�1

��
�3 � �2

�1

�
~A 2 : ~A T3

�
�3

1

6�

�
�2 � �1

�1

�2

j�2j
2 �

�3
1

6�

�
�3 � �2

�1

�2

j�3j
2

�
�3

1

3�

�
�2 � �1

�1

��
�3 � �2

�1

�
�2 � �3

)
k4

1 +O(k6
1); (26)

where

~A 2 =

Z
S1

�
(2)
1 (r0)
 n̂0 dS(r0); (27)

~A 3 =

Z
S2

�
(3)
1 (r0)
 n̂0 dS(r0); (28)

and �2;�3 are the vector invariants of ~A 2 ; ~A 3 respectively. Similarly, we can obtain the
leading-term approximation for the S-incidence.
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4. Scattering by a penetrable spherical scatterer with a concentric spherical
penetrable core

Consider a spherical scatterer of radius b, centered at the origin of the coordinate system, which
contains a concentric spherical inclusion of radius a. As we have already seen, the scattering
problem, using low-frequency techniques, is reduced to a sequence of problems governed by
(19) and satisfying the boundary conditions given by (21). In order to solve these problems
we can exploit the fact that the integral representation for the nth-order coefficient given by
(22), provides a particular solution of the nonhomogeneous equation (19). So, we only need
to solve the corresponding homogeneous equation. Introducing the Papkovich potentials we
can evaluate the solution of the above problem. The details of this method can be found
in [6]. Based on this method, after long and tedious manipulations, we have the following
representations for the displacement fields:

For the zeroth order approximation:

�
(1)
0 (r) = �

(2)
0 (r) = �

(3)
0 = a0; (29)

For the first order approximation:

�
(j)
1 (r) =

"
s
(j)
0 + q

(j)
0

�
r

a

�2

+ p
(j)
0

�
a

r

�3

+ t
(j)
0

�
a

r

�5
#
(a1 � k̂)r

+

"
s
(j)
Ak + q

(j)
Ak

�
r

a

�2

+ p
(j)
Ak

�
a

r

�3

+ t
(j)
Ak

�
a

r

�5
#
(a1 
 k̂) � r

+

"
s
(j)
kA + q

(j)
kA

�
r

a

�2

+ p
(j)
kA

�
a

r

�3

+ t
(j)
kA

�
a

r

�5
#
(k̂ 
 a1) � r

+

"
s(j) + q(j)

�
r

a

�2

+ p(j)
�
a

r

�3

+ t(j)
�
a

r

�5
#
(a1 
 k̂) : (r̂ 
 r̂)r;

for j = 1; 2; 3; (30)

where all the coefficients which appear in (30) are given in Appendix A.

5. An application to a typical particulated composite material

In what follows we will use the results given by Equation (30) in order to evaluate the first-order
low-frequency approximations of the displacement fields for a typical particulated composite
material. We assume that V1 (matrix) is filled with Epoxy (E1 = 5:033 GPa, �1 = 1:798 GPa,
�1 = 0:4, %1 = 1261 kg/m3) and V3 (inclusion) with Glass (E3 = 68:9 GPa, �3 = 28:01 GPa,
�3 = 0:23, %3 = 2620 kg/m3) where E1; E3 are the Young’s moduli, �1; �3 the shear moduli
and �1; �3 the Poisson ratios of the materials.

The interphase is a material with suitable properties in order to match the actual behaviour
of the two main phases of the composite (matrix-inclusion) (E2 = 48:173 GPa, �2 = 17:45
GPa, �2 = 0:38, %2 = 1387 kg/m3). We also assume that the ratio of the radii is b=a = 1:2.

The first approximation of the displacement fields is

�
(1)
1 (r) = 0:5675

�
a

r

�3

(a � k̂)r� 0:1815
�
a

r

�3 h
a1 
 k̂ + k̂
 a1

i
� r
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�2:722
�
a

r

�3

(a1 
 k̂) : (r̂
 r̂)r� 0:7722
�
a

r

�5

(a1 � k̂)r

�0:7722
�
a

r

�5

(a1 
 k̂ + k̂
 a1) � r + 3:861
�
a

r

�5

(a1 
 k̂ : r̂
 r̂)r; (31)

�
(2)
1 (r) =

"
�0:3475� 2:091

�
r

a

�2

+ 45:83
�
a

r

�3

�12:604
�
a

r

�5
#
� 10�3(a1 � k̂)r +

"
581:8 + 7:537

�
r

a

�2

�5:049
�
a

r

�3

� 12:60
�
a

r

�5
#
� 10�3(a1 
 k̂) � r + [�418:2

+7:537
�
r

a

�2

� 5:049
�
a

r

�3

� 12:604
�
a

r

�5
#
� 10�3(k̂ 
 a1) � r

+

"
�8:802

�
r

a

�2

� 63:12
�
a

r

�3

+ 63:02
�
a

r

�5
#
� 10�3

(a1 
 k̂) : (r̂
 r̂)r; (32)

�
(3)
1 (r) =

"
31:66� 0:8713

�
r

a

�2
#
� 10�3(a1 � k̂)r

+

"
565:9 + 5:758

�
r

a

�2
#
� 10�3(a1 
 k̂) � r

+

"
�434:1 + 5:758

�
r

a

�2
#
� 10�3(k̂
 a1) � r

�8:902� 10�3
�
r

a

�2

(a1 
 k̂) : (r̂ 
 r̂)r: (33)

At this point it should be noted that the interphasial coefficients of order O(r3), i.e. q(3)Ak; q
(3)
kA; q

(3)
0

and q(3) of (30) have a special behavior as the ratio b=a runs from 1 to large values. This

behavior is apparent in Figure 2 where the coefficients q(3)Ak = q
(3)
kA; q

(3)
0 and q(3) of the above-

mentioned particulate composite are presented as a function of the ratio b=a. In this figure
one can see that for large values of b=a(b=a > 3) the terms of order O(r3) become very small
and appear to have a behavior similar to those corresponding to the value b=a = 1 (particle
without interphase). Furthermore the four coefficients have a maximum at the same point
b=a = 1:2. As an explanation for this behavior of the solution �(3)

1 (r), we can say that the
two interfaces S1 and S2, because of the displacement and stress continuity, cannot easily
cooperate when the space between them is very thin, especially for a critical value of b=a.

Thus, in this case terms of order O(r3) appear at the displacement field�(3)
1 (r), in order�to

help� the material components to satisfy the boundary conditions on the surfaces S1 and S2.
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Figure 1. The geometry of the elastic scatterer with an elastic core.

Figure 2. Effect of the interphase thickness on the interphasial coefficients of order O(r3) for a spherical particle
composite material with material properties �1 = 1:798 GPa, �1 = 0:4; %1 = 1261 kg/m3 for the matrix,
�2 = 17:45 GPa, �2 = 0:38, %2 = 1378 kg/m3 for the interphase and �3 = 28:01 GPa, �3 = 0:23, %3 = 2620
kg/m3 for the inclusion.

6. The behavior of the leading term of scattering cross sections in low frequencies

As it is proposed in [8,9] a knowledge of the leading-term of the scattering cross section is
needed in order to find the dynamical properties of the composite.

From (26) the following formulae for the scattering cross sections hold

�p = ��pV 2
3 k

4
1 +O(k6

1); (34)

�s = ��sV 2
3 k

4
1 +O(k6

1): (35)

In the sequel the dependence of the reduced leading terms ��p; ��s on the relative elastic
properties of the composite is examined for two special cases. First, for the spherical particle
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Figure 3. Effect of the interphase/matrix shear moduli ratio �2=�1, on the reduced energy scattering cross sections
��p

; ��s for a spherical particle composite material with material properties �1; �3, �1; �2, %1; %2 and %3 as referenced
in Figure 2, for (i) b=a = 1:2 and (ii) b=a = 2:0.

composite material which is presented in the previous paragraph, the variation of ��p; ��s,
for b=a = 1:2 and b=a = 2:0 is presented in Figures 3(i) and 3(ii), respectively, as the
interphase matrix shear-moduli ratio �2=�1 takes values from 1 to 15. We can observe the
strong dependence of ��s on b=a and on �2=�1, whereas ��p remains unaffected by an increase
of �2=�1 above a certain value. This is due to the fact that �2=�1 expresses the ratio of the
shear moduli and, consequently, is directly related to S-incidence.

The thickness of the interphase has a major effect on both ��p and ��s. It extends the
impact of �2=�1 on ��p and ��s over a larger area. The coupling “role” of the interphase
is confirmed. The relative properties of the above composite material assume the values
�3=�1 = 15:6; %3=%1 = 2:077; %2=%1 = 1:1:

Finally, the special case of a composite material with identical matrix inclusion and an
interphase with the same Poisson ratio and density to the above, but different shear modulus, is
considered. The dependence of ��p and ��s on �2=�1 for b=a = 1:2 and b=a = 2:0 is presented
in Figures 4(i) and 4(ii), respectively.
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Figure 4. Effect of the interphase/matrix shear-moduli ratio �2=�1, on the reduced energy scattering cross sections
��p

; ��s for a spherical particle composite material with �1 = �3, �1 = �2 = �3, and %1 = %2 = %3 for (i)
b=a = 1:2: and (b) b=a = 2:0.

The trend of the curves is identical for b=a = 1:2 and b=a = 2:0 owing to the similarity of
the matrix and inclusion. The effect of the interphase thickness is strong, as can be confirmed
by the augmentation by two orders of magnitude of ��p and ��s when b=a increases from 1.2
to 2.0. In addition, the dependence of ��p and ��s on �2=�1 is very pronounced.

7. Discussion

The major line of applications of the present work belongs to the science of the particulate
composite materials. A typical particulate composite material is usually a homogeneous
isotropic elastic medium (matrix), containing elastic particles (inclusions) surrounded by an
elastic interphase due to the imperfect adhesion between matrix and particles. A mathematical
problem which has a considerable engineering importance in this area is the evaluation of the
dynamic properties of a particulate composite. Almost all the works that have appeared in
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the literature for this purpose are based on the same method. This method, consists in solving
first the scattering problem in a microscopic level (matrix-inclusion) and, from relations of
conservation of energy, the macroscopic dynamic properties of the composite are evaluated.
The same method has been followed in [8,9] where the macroscopic dynamic properties of
the composite have been evaluated through the low-frequency leading term of the scattering
cross section which gives a measure of the total energy scattered by the particles. So, the
solution of the examined scattering problem in this work can be exploited in order to evaluate
the dynamic elastic moduli of a composite at a macroscopic level.
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